
JOURNAL OF COMPUTATIONAL PHYSICS 57, 188-209 (1985) 

Sturmian Eigenvalue Equations with 
a Chebyshev Polynomial Basis 

G. DELIC 

Department of Physics and Nuclear Physics Research Unit, 
I Jan Smuts Avenue, Johannesburg 2001, South Africa 

AND 

G. H. RAWITSCHER 

Depurtment of Physics, University of Connecticut, 
Storrs, Connecticur 06268 

Received March 22, 1983; revised April 4, 1984 

A Chebyshev polynomial basis is proposed ,for the solution of Sturmian eigenvalue 
equations of the form Au =f which are encountered in Quantum Scattering theory. A is a 
non-self-adjoint second order differential operator and the solution is regular at the origin and 
has an outgoing wave boundary condition asymptotically. Introduction of the boundary con- 
ditions of the problem transforms the polynomial expansion into a set of linearly independent 
basis functions, or Chebyshev set, where each member of the set satisfies the boundary con- 
ditions. Substitution of this set into the eigenvalue equation leads to a finite, complex general 
matrix problem which is solved by conventional techniques. Detailed computation of eigen- 
values and eigenfunctions for five case: including analytical and physically realistic examples 
confirms the inherent polynomial stabdity of the method characteristic of the minimax norm. 
‘i; 1985 Acadenuc Press, Ini 

I. INTR~OU~TI~N 

Recently a set of basis functions has been proposed [l] for the approximation of 
integral operators in multichannel two-body quantum scattering theory. This basis, 
which is discrete, reduces solution of coupled equations in continuous variables to a 
finite matrix problem. The utility of the basis is dependent on the implementation of 
an efficient algorithm for the computation of the basis functions and the associated 
eigenvalues. These are the solutions of a Sturmian eigenvalue problem 

Av=f (1) 

where A is a linear second order differential operator which is not self-adjoint 
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because it contains a diffuse local interaction potential which is complex. The 
function f in the problem of interest has the form 

f=uiG (2) 

where P is also a diffuse local complex interaction. Thus, a and u are corresponding 
eigenvalues and eigenfunctions, which, for the choice of boundary conditions dis- 
cussed in Appendix A, are complex. However, the spectrum is entirely discrete even 
though it does not lie on the real axis as is the case for a self-adjoint operator A 
with a real asymptotic boundary condition for v [2]. 

Previously [ 11, the eigenvalue problem of Eq. (1) was solved by a step-by-step, 
or marching, algorithm and the discrete eigensolutions were ordered according to 
the number of nodes in the interaction region (Sturmian theory predicts a 
denumerably infinite number of these). As starting values square well results were 
used in the marching algorithm. This procedure works well in some cases but fails 
to find some or all eigenvalues in others. It is this problem which motivated the 
development of the method discussed in this communication. 

In the present approach the solution v of Eq. (1) is approximated in a series of 
Chebyshev polynomials [3]. Each independent boundary condition gives an 
equation relating the coefficients of this expansion amongst themselves and this 
leads to a set of linearly independent approximating polynomials satisfying the 
boundary conditions. On defining an inner product having the Chebyshev weight, a 
set of N such functions constitutes the elements of an N-dimensional Hilbert Space 
and is referred to here as a Chebyshev set. As N + cc successive bounds on the 
eigenvalues of Eqs. (1) and (2) form a convergent sequence because (on the finite 
interval) the polynomials with complex rational coefficients are dense in the space 
of functions u [4]. Furthermore, this Chebyshev set enjoys the characteristic 
property of Chebyshev theory, namely, that out of the class of approximating 
polynomials, on the interval of approximation, it provides a “best” approximation 
in the sense that it minimizes the maximum error as N-+ co. 

Equation (1) is then solved as a matrix problem where the eigenvectors are the 
coefficients of the Chebyshev set and the corresponding eigenvalues solve Eq. (1). 
The method succeeds in all live cases discussed below and displays polynomial con- 
vergence for both eigenvalues and eigenfunctions as a function of increasing basis 
size. 

The previous results [l] are duplicated by the present method and extended to 
physically realistic cases with orbital angular momentum I# 0 and energies in the 
range 14 to 987 MeV. Qualitative features of eigenvalues and eigenfunctions are 
described in detail. It was noted [ 1 ] that if A contains an interaction which is a 
square well and P is also a square well, then Eq. ( 1) may be solved analytically [ 51. 
This is so, even if both interactions are complex, as the eigenvalues are roots of a 
transcendental equation. This result is useful for checking purposes when develop- 
ing Chebyshev polynomial methods for diffuse interactions as outlined in Sections 
II and III. However, the eigenfunctions of such a square well case are spherical 
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Bessel functions of complex argument which may themselves be used as an expan- 
sion basis set for eigensolutions of Eq. (1) with diffuse interactions. Results for this 
choice of basis set and the method of solution of Eq. (1) for the square well case are 
reported in a separate communication [6]. 

The present communication is divided into seven sections and three appendices. 
Sections II and III introduce the Chebyshev set and the matrix method of solution 
for the eigenvalue problem. Sections IV to VI detail the live cases to which the 
method has been applied and results for eigenvalues and eigenfunctions are 
described. The appendices describe analytical and numerical details of the com- 
putations and Section VII summarizes conclusions and points to areas of further 
study. 

II. THE CHEBYSHEV POLYNOMIAL BASIS 

Consider the explicit form of Eq. (1) 

where 1 refers to orbital angular momentum and takes only integer values, k2 is a 
real constant. and 

k2 - 2pE 
h2 (4) 

(5) 

(6) 

with E the center-of-mass energy in million-electron volts of a particle mass p. The 
eigenfunctions and eigenvalues carry the subscript Ij and are assumed ordered 
strictly according to increasing magnitude of a0 for fixed 1. 

The solutions of Eq. (1) required here are regular at the origin and, for all j and 
fixed I, satisfy an outgoing-wave boundary condition at some radius r k a beyond 
the range of U,(r) or O(r). In the present work U,,(r) and D(r) are assumed to 
decay exponentially in the exterior region and to have no singularities in the inter- 
val of approximation. Details of the choice of boundary conditions are given in 
Appendix A. 

Since the regular solution only is required, introduce uo(r), where 

ori(r i 
0 

I+ 1 
q(r). (7) 
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The function uG(r) on the interval r E [0, a] is expanded in a series of shifted 
Chebyshev polynomials T,*(x’), or Tzn(x), 

U/j(r)= f ?bz(U) Tzn(X) 

n=O 
(8) 

and the approximation consists of truncation of the summation at some it = N 
which is sufficiently large. In Eq. (S), r = ax and E, is one when n is zero and two 
otherwise. The coefficients bi are defined by inversion of (8) and application of the 
orthogonality property of the Chebyshev polynomials. 

In the case that U,(r) = u(r) = 0 the coefficients b{ are those of the Spherical 
Bessel function j,(b) expanded on the interval [0, a] and may be generated by 
recurrence [7]. If U,(r) and O(r) are diffuse potentials this is no longer the case. 
However, an alternative approach is as follows. Substitution of (7) and (8) into 
(A3) shows that 

b&7) = $ d;(a) b$(a) (9) 
n=l 

where 

d;(u) = -2 1 + 
[ 

4n2 
I+ 1 - uB,(ku) 1 (10) 

and the coefficients bt and constants di are complex. The second boundary con- 
dition at r = 0 is satisfied by multiplying all the coefficients bf by an arbitrary con- 
stant which is fixed by requiring the normalization given by Eq. (2.4) of [l], 
namely, 

uD f a dr Do(r) V(r) uo(r) = 1. (11) 
0 

Thus, substitution of (9) into (8) shows that the eigenfunctions of (3) may be 
approximated by a set of linearly independent polynomial functions t:(x), satisfying 
the boundary conditions of the problem; i.e., 

Uo(r)= f @t:(x) (12) 
?I=1 

where the summation no longer includes an n = 0 term and 

To(x) + Tzn(X). (13) 

A matrix eigenvalue problem may now be formulated for the coefficients of 
Eq. (12) and eigenvalues ali as described in the next section. 
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III. MATRIX METHOD OF SOLUTION 

Substitution of the form (7) into the differential equation (3) and multiplication 
by r2 = a2x2 gives 

where the operator A, is defined as 

A,=x2-$+2(1+l)x&+a2x2k2-a2x2Uo(ax). 

Using properties of Chebyshev polynomials [S, 91 it follows that 

A&(x) = C;(x) + D;(x) 

where the functions C and D are defined as 

c;(x)=,Iy 4n(2n2 - 2k2 + 21+ 1) TZk(x) + ‘k=~,,(X), 

with 

and by definition 

D;(x) = a2x2k2t~(x) - a2x2Uo(ax) t!,(x) 

D;(x) = a2x20(ax) t;(x). 

Substitution of Eq. (12) into (14), multiplication by each of the functions 

t#), n’ = l,..., N, 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

and integration over x with respect to the weight function l/d?-? leads to the 
N x N complex general matrix eigenvalue problem 

Rb’= a,Hb’. (21) 

There are N eigenvectors b’, of coefficients b$ n = l,..., N, corresponding t,o N eigen- 
values C(~, j= l,..., N. 

Defining the scalar product 

then the matrix elements of R and H are 

R,,,, = (t;,, CL> + (t;,, 0;) (23) 

(22) 
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and 

H,,., = (t;, , D;). (24) 

Using Eqs. (13) and (17) with the orthogonality property of the Chebyshev 
polynomials it follows that 

($, C~)=2n{c:,~~.+&,-,,r:,.+2ni),,.}5 (25) 

where 

CL, = 0 3 n’>n 

and 6,,. is the Kronecker delta function. Assuming the Chebyshev expansions 

R(x)= 2 $h;T*,(x), 
WI=0 

(264 

a;(x)= f FI;:.T2fi(x) Wb) 
+I=0 

then 

W’b) 

and h;, tie are simply related to the Chebyshev expansion coefficients of V,(r) and 
O(r) as shown in Appendix B. 

The matrix R is not symmetric because of the first term in (23). However, the 
second term is symmetric as is the matrix H. Both matrices are complex and neither 
is Hermitian; however, assume the decomposition 

H = WA “*(WA 1’2)T, (28) 

where T denotes transpose and W is the matrix of eigenvectors of H with n the 
diagonal matrix of corresponding eigenvalues. The complex general eigenvalue 
problem of Eq. (21) is then solved as follows. 

ALGORITHM R 

(1) Form H as in Eq. (24). 
(2) Solve Hy=ly. 

(3) Form K = WA ~ “‘. 

(4) Form R as in Eq. (23). 
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(5) Form h = KTRK. 

(6) Solve I%=&. 
(7) Form b= Kg. 

In step (3) W contains eigenvectors y normalized such that WWT = 1. The eigen- 
vectors 6 in step (6) of Algorithm R (and consequently b) are, in general, not nor- 
malized after diagonalization. If only eigenvalues are required then step (7) and 
normalization are omitted. However, for the results discussed in Section VI the 
eigenvectors are normalized as follows. Substitution of Eq. (7) into Eq. (11) gives 

The numerical evaluation of the integral is described in Appendix C. 
If the unnormalized eigenvector b (U) is used then the result of Eq. (29) is not 1 

but ti. # 1, and normalized eigenvectors b are obtained from b’“‘/& However, this 
procedure does not determine the overall sign of b, nor does matching the 
logarithmic derivative of Eq. (A3). Furthermore, corresponding eigenvectors of 
matrices of different order N, N+ 2, etc., can differ in an overall sign. 

This phase factor is fixed by requiring, as in (A2), that at r= a u&a) = H,(ka). 
The uri so defined are those discussed in Section VI and they differ in normalization 
(Eq. (2.5) of Ref. [ 11) from those defined by (11) although the same notation uri is 
used here. 

IV. FIVE CASE STUDIES 

To illustrate the application of Algorithm R and study the convergence properties 
of the method proposed in Sections II and III live examples were chosen and are 
referred to as cases one to live. In all cases V,(r) was taken equal to P(r) and 
Table I lists the potential parameters of p(r) as well as the truncation radius used 
in each case. Case two is the Soper potential discussed in [ 1 ] and cases three and 
four are Woods-Saxon potentials approaching the square well of case one which 
were also discussed in [l] (cf. Fig. 2 of that reference). In the previous work eigen- 
values and eigenfunctions for cases two to four were computed using the Numerov 
marching algorithm for 1= 0, k = 0.79722 fm ~ ‘, 2p/h2 = 0.045018 fm - ’ MeV ~ ‘, 
and R = 3 fm. Here these results of the Numerov method where repeated and exten- 
ded to case five for I = 0 to 14. 

Convergence of Algorithm R has been studied as a function of 

(A) N, + 1, the number of Chebyshev coefficients in the expansion of V0 and 
rin Eqs. (Bl) and (B2), 

(B) a, the truncation radius in r, and 
(C) N, the order of the matrix in Eq. (21). 
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TABLE I 

Potential Parameters of p(r) for Cases One to Five 

Case” 

Real part 

- 

(I& (2, 

Imaginary part 

- 

Truncation radius 

One -50 - 0 - 3 
Two -50 k 0.5 0 1.39 
Three -50 0.2 0 - 4.15 
Four -50 0.08 0 3.70 
Five -25 0.5 -5 0.5 7.39 

a With a radius of R = 3 fm in all cases, the radial form of the potentials was, for case one, Real 
V(r) = vo, r~ [O, R]; for cases two to five, Real r(r) = r,,/{ 1 +exp[(r - R)/d,]}; for case five, 
Imaginary F(r) = 4p,, exp[(r - R)/d,]/{ 1 + exp[(r- R)/d,+]}2. 

Convergence as a function of N has also been studied for increments in energy E 
from 14.11 to 987 MeV for I= 0 for all live cases of Table I. For the lowest energy 
marching and matrix algorithms are compared in detail for 1= 0, 4, and 6 in case 
live. 

This section is concluded with some details on the only non-trivial numerical 
operations involved in Algorithm R. These are computation of the coefficients 
g,, g, of Eqs. (B3) and (B4), Coulomb functions H,(ka) and derivatives H;(ka) of 
Eqs. (A2) and (A3), and numerical matrix solution of Algorithm R. 

The only integrals of the matrix method which need to be evaluated numerically 
are those of Eqs. (B3) and (B4). Since there are some 100 of these at the most, suf- 
ficient accuracy is obtained at negligible cost in computing time with a seven point 
Newton-Cotes quadrature [lo] with a step size of 0.005 fm. In the last subinterval, 
to avoid the singularity at x2 = 1, a formula which does not require the end points 
is applied. 

All the calculations reported here refer to cases where V,(r) does not contain a 
Coulomb term. Thus the Sommerfeld parameter r] is zero and F,, GI, Eq. (A2), 
were computed with the subroutines of [11] using a value of q = 10e6 to lo-‘. 
Variation of q in this range produced only changes of the order of one digit in the 
fourth figure of the largest eigenvalues of cases two to live. 

The matrix diagonalizations of Algorithm R were performed by using the CBAL, 
COMHES, COMLR2, and CBAK2 subroutines of the Matrix Eigensystem 
Routines EISPACK [12]. This procedure determines all eigenvalues and eigenvec- 
tors of a complex N x N matrix. Excluding time taken for computation of gp, gp, 
H,, Hi, and normalization of eigenvectors, Eq. (29), typical performance for 
Algorithm R is t (set) = 2.36 x 10 0049(N-20)w2.4 to 69 s with N= 20 to 50 on an 
IBM 3083E8 processor with double precision arithmetic. 



196 DELIC AND RAWITSCHER 

V. CONVERGENCE FOR EIGENVALUES 

In this and the following section the numerical behaviour of the method is 
analysed for the five cases of Table I with a view to displaying its inherent 
numerical stability. Cases one to four of Table I are of interest more from the point 
of view of verifying coding and substantiating the method while case live is an 
example of a relatively “difficult” but also physically realistic potential. Therefore, 
results of case live are discussed in more detail and Section VI shows results only 
for this case. 

Analysis of convergence to a prescribed accuracy must provide answers to the 
points raised in Section IV. How many polynomials are required to approximate 
VO(r) and P(r) and what is the best choice of truncation radius? What is the 
required order N of the matrix for a prescribed accuracy? How is convergence affec- 
ted by changes in E or I in Eq. (3)? The prescribed accuracy of eigenvalues com- 
puted by Algorithm R (unless otherwise stated), is convergence to within one digit 
in the fourth significant figure for both real and imaginary parts. 

Comparison between results of the marching algorithm (Table I of [ 1 ] ) and the 
matrix method for I= 0, E = 14.11 MeV with N, = 24 and a = 7.39 fm showed that 
agreement is generally satisfactory but a more detailed comparison is limited by 
truncation error of the Numerov marching algorithm. For this reason the square 
well of case one has been included and results for I= 0 computed from the 
analytical formulae as described in [6] for kR = 2.392 to 19.13. The comparison 
with these analytical results is important as it should show if the R algorithm con- 
verges to the exact result. 

A. Convergence us a Function of N, (E= 14.11 MeV, I= 0) 

With the truncation radius Y = a fixed at some point where r(r) (= VO(r)) is 
N 5 x lo- 3 MeV, then, for a given value of N, in (Bl) and (B2), the R algorithm of 
order N produces N eigenvalues. These eigenvalues converge, as a function of N, if 
N is incremented until the prescribed error is reached (see (C) below). If N, is 
incremented and the polynomial approximation of the potentials improved then the 
eigenvalues produced by the R algorithm again converge as a function of N. 
However, in this case the eigenvalues will be closer to the exact values. 

Table II summarizes results for cases two to four giving N, and indicating with 
an asterisk where convergence (as a function of N,) has not reached the prescribed 
accuracy. In Table II, for each j, first, second, third, and fourth lines correspond 
respectively to cases two, three, four, and one, i.e., decreasing diffuseness d,. N is 
the order of the matrix which produced convergence (as a function of N) to within 
the prescribed error. The entry SQ, for each eigenvalue, is the result of algorithm R 
applied to the square well which cases two to four approach. The entry SQ is iden- 
tical to the analytical result obtained from the method of [6]. Thus, the R 
algorithm gives the exact eigenvalues of the square well and also the previously 
observed behaviour [ 1 ] of the spectrum as P approaches the square well. 
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TABLE II 

Convergence to the Square WelP 

197 

i N, N Real Imaginary Magnitude 

1 10 16 -0.09983 -0.2350 0.2553 
8 12 - 0.06343 - 0.2040 0.2137 

12 14 -0.05621 -0.1971 0.2050 

SQ 4 -0.05471 -0.1957 0.2032 

2 14 20 0.6525 
10 14 0.8059 
10 14 0.8311 

SQ 6 0.8338 

-0.4737 0.8063 
-0.3142 0.8650 
- 0.2654 0.8725 
- 0.2542 0.8717 

3 18 22 2.103 
16 20 2.623 
12 16 2.153 

SQ 8 2.768 

-0.7104 2.220 
- 0.3949 2.653 
- 0.2746 2.767 
- 0.2434 2.779 

4 20 28 4.198 -0.9628 4.307 
18 22 5.284 -0.5032 5.308 
18 20 5.636 -0.2989 5.644 

SQ 10 5.688 -0.2398 5.693 

5 18 26 
20 24 
20 22 

SQ 12 

6.933 
8.763* 
9.457* 
9.585 

- 1.220 
-0.6249* 
-0.3325* 
-0.2384 

7.039 
8.786* 
9.463* 
9.588 

6 18 30 10.31 
20 26 13.05 
20 28 14.20 

SQ 14 14.46 

- 1.477 
-0.7501* 
-0.3723* 
-0.2376 

10.41 
13.08* 
14.20* 
14.46 

I 18 32 14.33 
20 28 18.16 
20 30 19.88 
SQ 16 20.30 

- 1.738 14.43 
-0.8778* 18.18* 
-0.4187* 19.88 
-0.2372 20.30 

8 18 38 18.99 
16 26 24.10 
20 32 26.44 
SQ 16 27.12 

- 1.999 19.10 
- 1.008 24.12 
-0.4712* 26.44 
-0.2370 27.12 

9 18 40 24.29 
20 32 30.82 
20 36 33.91 

SQ 18 34.92 

-2.265 24.40 
- 1.138* 30.84* 
-0.5204* 33.91 
-0.2367 34.92 

“E= 14.11 MeV and I=O. 
’ The SQ entry for each j is the R algorithm result for a matrix of order N giving convergence of one 

digit in the fourth ligure. 
c The asterisk indicates those numbers where the convergence as a function of N, is not yet one digit 

in the fourth figure but is at most ten times larger. 



198 DELIC AND RAWITSCHER 

Also, in view of the results of Table II, a value N,. = 24 was considered as suf- 
ficient for all subsequent calculations. 

B. Conoergence as u Function of a (E = 14.11 Me V, I= 0) 

The truncation radius should be chosen as small as possible, but still in the 
region where p((r) is negligible. The truncation radii used in the present calculations 
are given in Table I. A study of case two showed that smaller eigenvalues are less 
sensitive to truncation radius variations than larger ones. Similar results hold for 
case five where variation of the j = 1 to 9 eigenvalues for a = 4.93 to 7.39 fm was 
studied. The latter values when compared to the marching algorithm results for 
1= 0 show that to produce accuracy of the order of three significant figures for 
eigenvalues of magnitude up to - 57 the truncation radius a should be chosen in 
the region where neither real nor imaginary parts of V are larger than - 0.1 percent 
of their maximal values. 

C. Convergence us a Function of Matrix Order N (E = 14.11 MeV, 1= 0) 

Once N, and a are fixed the convergence of each eigenvalue to the prescribed 
error limit may be studied as a function of matrix order N. Figure 1 shows the rate 
of convergence to a prescribed error of one digit in the Sth significant figure as a 
function of N for the square well. This shows that to obtain three significant figures 
for eigenvalue j = J a matrix of order N = 25 should be diagonalized [ 131 and for 
each additional significant figure the matrix order is incremented by one. This com- 
parison with the analytical result of the square well demonstrates the rapidly 
improving bound on the eigenvalue computed in the R algorithm. Figure 2 shows 
the effect of increasing diffuseness d, (cases four, three, and two) and the more 
realistic example of case live. In general the rate (i.e., slope) of convergence of all 
eigenvalues is largely unaffected by increasing diffuseness d,, but the onset of con- 
vergence (value of N for S = 1 or 2) lies at larger values of N. 

10 
CASE ONE 

0 I 
, I I I I I I 1 

0 2 4 6 8 10 12 14 lb 16 20 ; 
ORDER OF MATRIX N 

FIG. 1. Rate of convergence to one digit in the Sth decimal as a function of matrix order for the 
square well with E= 14.11 MeV and I= 0. The numbers on the curves give the j of the eigenvalue listed 
as the SQ entry in Table II. 
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5 
(I,) CASE THREE 

4. 2 I,3 4 5 6.7.8 

3. 

1 _ 

I 2 3 4 5 6 7.8 

5 
1 (d) CASE FIVE 1 

6 
4 

2 3 145 67 

1 - 

2 3,14 56 78 

FIG. 2. As in Fig. 1 with (a) case four, (b) case three, (c) case two, (d) case live. The numbers on the 
curves give the j of the eigenvalue. 

D. Convergence as a Function of Energy E (l= 0) 

To study how convergence as a function of matrix order N changes as E 
increases, computations for all live cases were performed in the energy range 14 to 
987 MeV. Figure 3 shows log(E) versus N, where N is the matrix order required to 
produce the prescribed error of one digit in the fourth significant figure for the first 
four eigenvalues of cases one to four. There is a moderate trend of increasing N 
with increasing E for a given eigenvalue. This results largely from the increase in 
magnitude of a given eigenvalue, for a fixed r(r), and as was seen in Table II, 
larger eigenvalues require a larger N to reach the prescribed error. 

E. Convergence as a Function of I 

The magnitude of all eigenvalues 5 100 of case live where j < 10 and I< 14 is 
shown in Fig. 4. This figure shows those eigenvalues which have reached the 
prescribed error limit as a function of the matrix order N required to achieve this 
limit. From this figure it is clear that the matrix order required to produce a prere- 
quisite accuracy depends on the absolute magnitude of the eigenvalue. Figure 5 
shows a spectral plot of the same eigenvalues (I< 6) in the complex eigenvalue 
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FIG. 3. Convergence as a function of energy (log E) for (a) case one, (b) case four, (c) case three, 
(d) case two. The points show the order IV of the matrix required for convergence of one digit in the 
fourth tigure at each energy for eigenvalues j= 1 to 4. Different ,j values are not distinguished as the 
general trend is similar. Results of case five are similar to those for case two. 

plane. From the functional analytic viewpoint the mathematical content of Eq. (3) 
is displayed in this spectral plot. 

Comparison with the marching algorithm results showed good agreement 
between the two methods, typically within a few digits in the fourth significant 
figure. The comparison also showed that the marching algorithm fails to find some 
eigenvalues. Of 127 eigenvalues with j< 10 and I< 14 eighteen were not found by 
the marching algorithm. This is not unexpected since the marching algorithm 
searches the complex CQ plane and not simply the real line and its degree of success 
depends on estimates for the location of the a,, in this plane. In contrast to this the 
R algorithm of rank N always gives N eigenvalues. Furthermore, with increasing N 
an improved bound on each eigenvalue is obtained until the R algorithm converges 
to the true eigenvalues of the non-self-adjoint problem of Eq. (3). 

!i = G 100 L 0 TO 14 El _ 
N 
I 

El 

z 
III 

60 _ 

E 

3 

El 

v 

c 

20 - 

1 0 m q @ I 
2b 

I I I 1 0 10 30 sb 50 60 70 80 
ORDER OF MATRIX N 

FIG. 4. The matrix order N required to produce convergence of one digit in the fourth tigure for 
I=0 to 14, as a function of the magnitude of the eigenvalues for case five. All eigenvalues which have 
reached this prescribed error are included. 
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REAL 

FIG. 5. Spectral plot of eigenvalues for case live in the complex plane for I=0 to 5. Only those fall- 
ing in the ranges chosen for ordinate and abscissa are shown. 

VI. CONVERGENCE FOR EIGENFUNCTIONS 

Eigenfunctions for the first four eigenvalues of case two (I= 0) are shown in 
Fig. 1 of [ 11. There it is seen that in general, both real and imaginary parts of 
eigenfunction v,, have j nodes (including the one at r = 0) inside the range of the 
potential r(r). Outside the range of r((r) all the eigenfunctions vU, for fixed 1, are 
identical and oscillate with an amplitude unity. These qualitative features already 
suggest that eigenfunctions for large j require an increasingly higher order 
polynomial approximation. Furthermore, the approximation is necessary only 
inside the range of P. 

In this section eigenfunctions of case five only are discussed as this is numerically 
the most difficult and physically the most realistic example. The eigenfunctions 
produced by the R algorithm have been compared with those produced by the 
marching algorithm. Figures 6 and 7 show error curves for I = 0 and 4, respectively 
for different j values. In each case the unbroken line is the value of the eigenfunction 
d0 generated in steps of 0.0078125 fm by the marching algorithm integrating 
inwards from a marching radius of 11 fm. The results shown are indistinguishable 
from calculations performed with double this step size. The broken curve shown in 
the figures is the absolute error 

AC4u(r) - vo(r)lT rEma (30) 

where A is a scaling factor and vO(r) is the eigenfunction, Eq. (7), produced by 
Algorithm R. All results of Figs. 6 and 7 were obtained from a matrix of order 
N, = 66 but the number of terms N required in Eq. (8) is generally substantially 
less and varies with I and j. The values of N, Z, and j together with real and 
imaginary parts of the eigenvalues obtained by the R algorithm as well as the 
magnitude J’crscc,T are shown in Figs. 6 and 7. The most accurate results are for 
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E 
CASE FIVE L=O MATRIX OF ORDER 66 

1 N=26 EIGENVALUE 1 -0.07355 -1. 28343 1. 2855: 

:. 0. * (=) _ 

-0.6 _ 

-0.8 _ 

-1 
1 I 

0 1 2 
I I 

3 4 4 
I I 

6 7 
RADIUS (FM> 

CASE FIVE 
1 N-57 EIGENVALk-1: 

MATRIX OF ORDER 
55.05826 -16.75142 57.5&6 

-1 
V 

I I I I 
2 4 

I I 
0 1 4 5 6 7 

RAOIUS (FM) 

FIG. 6. Eigenfunction for I= 0 computed by the marching algorithm (unbroken line) and 
corresponding error curve (dashed line) of Eq. (30) for (a) j= 1 and (b) j= 10. The scale factor A of Eq. 
(30) multiplying the error curve is 100. Only the real part is shown since the results for the imaginary 
part are similar. Also shown, on the top of each frame, is N the number of terms retained in Eq. (8) the 
,j-value, real and imaginary parts of the eigenvalue, and the magnitude. 

I= 0 where for j = 10 the absolute error is some two orders of magnitude less than 
the peaks in the eigenfunction. As 1 increases the absolute error increases but for 
j>,2 and 1~ 9 does not become excessive where the eigenfunction has its maximal 
values inside the potential 7. However, when the eigenfunction is more polynomial- 
like as for 1= 4, j = 8 (Fig. 7) the absolute error tends to be substantial at the zeros 
of the eigenfunction and zero at the maxima. The largest errors occur for 1 = 8 (not 
shown) and in general, as 1 increases, the eigenfunction inside the interaction region 
has oscillations of increasing magnitude while outside the interaction region the 
behaviour is decreasing and monotonic. Thus by l= 14 (not shown) the amplitude 
of the oscillations is N lo5 and is some three orders of magnitude larger than the 
eigenfunction in the immediate exterior region. 



STURMIAN EIGENVALUE EQUATIONS 203 

F 
CASE FIVE 

‘=: 
MATRIX OF ORDER 

4 N-27 EIGENVALUE 2.95662 -1.56734 3.3::3; 

: 3.2 1 (a) 

-4 I 
I I I 

0 
I I I I 

1 2 3 4 5 6 7 
RADIUS (FM> 

E” 
CASE FIVE L=4 MATRIX OF ORDER 

4 N=42 EIGENVALUE 83 56. 90533 -14.52050 58.7%71 
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1:;; 1 , , , , , , , 
0 1 2 3 4 5 6 7 
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FIG. 7. As in Fig. 6 for I= 4 and (a) j= 1, (b) j= 8. The scale factor A of Eq. (30) multiplying the 
error curve is 100. 

Thus the number of Chebyshev coefficients required to approximate the eigen- 
functions for larger I and j increases. Inspection of the eigenfunction confirms that 
exclusion of the monotonic behaviour in the exterior region from the interval of 
approximation would improve the approximation on the whole interval [O, a]. 
This is shown in Fig. 8 where the results of case five with 1= 6, j = 7, are shown for 
two truncation radii a = 7.39 and 6.67 fm. With decreasing a the error curve has a 
reduced amplitude in the exterior region and the approximation on the interval 
[0, a] improves substantially. This behaviour is typical of all larger j and 1> 0. An 
empirical criterion for determining the optimal truncation radius a is inspection of 
the sum, Eq. (8) computed at r = 0. This sum converges strongly as a is reduced, 
but will cease to do so when a is reduced beyond an optimal value. Further 
improvements in the approximation would follow from more accurate computation 
of the expansion coefficients for the interactions Vo(r), V((Y), in Eqs. (Bl ), (B2), or 
an increase in N,. 

581/51/2-4 
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20 FE: zEN”ALbE= 6 MATRIX OF ORDER 
7 59.97763 -13.96933 6 

16 (a) _ 

12 _ 

8- 

4- 
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z 
CASE FIVE L = 6 MATRIX OF ORDER 

20 N=41 EIGENVALUE 7 59. 97955 -13. 95658 61. $9; 
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FIG. 8. Eigenfunction for I = 6 and j = 7 computed by the marching algorithm (unbroken line) and 
corresponding error curve (dashed line) for the real part with a truncation radius of (a) 7.39 (b) 6.67 fm. 
Note that the eigenvalue differs slightly as a function of a. The scale factor A of Eq. (30) multiplying the 
error curve is 10. 

However, in physical applications the eigenfunctions need only be well 
approximated inside the range of r since they invariably occur in products with F 
or shorter range interactions and large errors closer to r = a are of less significance. 

VII. CONCLUSIONS 

The present work proposes the use of a set of linearly independent polynomial 
approximating functions for solution of Sturmian eigenvalue problems where the 
linear differential operator is not self-adjoint. Each member of this set satisfies the 
boundary conditions of the problem and the set is a Chebyshev set. That is, out of 
the class of approximating polynomials, on the interval of approximation, it 
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provides a “best” approximation, in the sense of the minimax (or uniform) norm as 
N+CO. 

In such a truncated basis the Sturmian eigenvalue problem is transformed into a 
finite, complex general matrix problem which is solved by conventional techniques 
through application of the R algorithm of Section III. Five case studies confirm 
that as a function of increasing basis size, the Chebyshev set provides uniform con- 
vergence for both eigenvalues and eigenfunctions when compared to the results of a 
marching algorithm. For a good approximation inside the range of the interaction 
potentials, the number of basis functions required is not excessive. Furthermore, the 
number of basis states required is only moderately increased by large variations of 
physical parameters such as energy E or orbital angular momentum 1. The rate of 
convergence of the method is greatest in the square well case where the interaction 
is exactly reproduced by a finite polynomial approximation. For realistic interac- 
tion potentials a good approximation and satisfactory convergence with a moderate 
number of basis states is still possible with an optimal choice of the truncation 
radius. This optimal choice depends on the nature of the physical problem, i.e., a 
knowledge of the fact that for a given energy only a restricted range of orbital 
angular momenta I are significant and some I values in this range provide the 
dominant contribution. Thus any approximation scheme should be optimized for 
those eigenvalues or eigenfunctions which dominate the physical process. A study of 
the type described here is unable to specify which eigenfunctions are physically 
more significant and thus need to be well approximated. These and other questions 
of utility of the basis proposed here are the subjects of study in a problem of 
physical interest [ 141 while a comparison of convergence properties of the 
Chebyshev set with a Bessel function basis is reported elsewhere [6]. 

The present study has verified the inherent numerical stability of Chebyshev sets 
for linear non-self-adjoint Sturmian eigenvalue problems. However, improvements 
in efficiency are still possible and such possibilities as well as a study of 
mathematical properties of the Hilbert space spanned by the Chebyshev set are sub- 
jects under investigation. 

APPENDIX A: BOUNDARY CONDITIONS 

The boundary conditions on the solutions sN(r) of Eq. (3) are regular at the 
origin and “outgoing-waves” asymptotically 

u,j(r) r To rif ’ 

UJr) .zm H,=G,-i-iF, (‘42) 

where F,(h) and G,(h) are regular and irregular Coulomb functions in the case 
that U, contains a Coulomb term Z, Z*e’/r. If no Coulomb term is present, then F, 
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and G, are proportional to the radius times j, and n,, the spherical Bessel and 
Neumann functions, respectively. 

Continuity of the logarithmic derivative at some point r = a where the potentials 
U0 and 0 are negligible requires that 

1 du&) 1 dH,(kr) -- =-- 
u/j(a) dr r=(I H,(ka) dr r=a 

= B,(ka). 
(A3) 

APPENDIX B: CHEBYSHEV COEFFICIENTS FOR U,, U,Ll, AND D 

On the interval r E [0, a] U0 and 0 are approximated by Chebyshev polynomials 

Uo(ax)= 9 ?n,T*p(x) (Bl) 
p=O 

V(ax) = z T gpT*Jx) WI 
/7=0 

where 

(B4) 

The coefficients in the expansion (26) for the same interval are formally defined by 

Q2 j" 
n -I 

d{k2- U,( luxl)} t;(x) x2T2,(x) - 
J&2 

4 ="1+1 
71 -1 

u*O(luxl) t;(x) XV*,(X) - 
4% 

or in the notation of Eq. (22) 

h:,=;u’k’(t:, x’T,,&u*(tJ,,r~, ,x*T,,) (B7) 

035) 

W) 

(B8) & =; a’( ot;, x2T2,& 
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Consider (B8), substituting Eq. (13) for t;(x), applying properties of the Chebyshev 
polynomials, and substituting 

yield 

The second term of (B7) is identical to (B9) with gF replaced by gp. 
If D is a square well of radius R = a, then from (B4) the only non-zero coefficient 

gp is 

go=20 @lo) 

and (B9) gives the result 

and for n>2 

(B11) 

0312) 

(B13) 

0314) 

with all other values of & zero. 
The first term on the right-hand side of (B7) is identical to the expressions (Bll) 

to (B14) if i!? is replaced by k*. 

APPENDIX C: EVALUATION OF THE NORMALIZATION INTEGRAL 

With the expansion of Eq. (12) for uU(r) and another of the form (B2) for V(r), 
both for the same interval TE [0, a], the integral of Eq. (29) may be evaluated by 
recurrence on applying properties of Chebyshev polynomials. The product of two 
Chebyshev series may be written as a third Chebyshev series (see Sect. 8.6.1 of Luke 
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[S]). Defining such a product in the integrand of (29) the integral which remains, 
namely, 

I;’ = i* dxx2’+*T2n(X) (Cl) 

is generated by recurrence as follows. If N and L are the maximum values of n and I 
respectively, then 

and 

c = - 1/(4n’ - 1 ), n = o,..., N+L+l, (C2) 

4Z’+‘=Z;+, +2Z’ +I’ n n In- II’ l=O ,..., L, n=N+L ,..., 1, (C3) 

ZF1= l/(21+3). (C4) 

Checking the recurrence (C3) against the analytical result (C4) for E= 0 to 50 
and n =0 to 80 reveals an order of accuracy better than lo- l5 when working to 
sixteen decimals. 
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